Even digital natives — that started their business in the cloud without legacy applications in their own data centers — need to modernize their cloud-native enterprise architecture to improve business processes, reduce costs, and provide real-time information to their downstream applications. This blog post explores the benefits of an open and flexible data streaming platform compared to a proprietary message queue and data ingestion cloud services. A concrete example shows how DoorDash replaced cloud-native AWS SQS and Kinesis with Apache Kafka and Flink.
Message Queue and ETL vs. Data Streaming With Apache Kafka
A message queue like IBM MQ, RabbitMQ, or Amazon SQS enables sending and receiving of messages. This works great for point-to-point communication. However, additional tools like Apache NiFi, Amazon Kinesis Data Firehose, or other ETL tools are required for data integration and data processing.